甘藏大神吧 关注:577贴子:20,246

发些基数,这些本来都是我的,被冰毅转载了

只看楼主收藏回复

为了让你们好拿走,好借,放评论


IP属地:山东来自Android客户端1楼2023-12-01 19:43回复
    CK序数:
    第一个不可计算序数是ω_1^ck,这是所有递归序数的集合,而ck是邱奇克林的缩写,而第二个不可计算序数为ω_2^ck,这是第一个不可计算序数ω_1^ck放入任何递归运算的集合总和,这里的运算可以有很多,如后继,加法,乘法,乘方,中函数,序数坍缩函数.…...,而我们还有第三个不可计算序数ω_3^ck,第四个不可计算序数ω_4^ck,第五个不可计算序数ω_5^ck.....以此类推,不可计算序数可以任意的多,不过任意ω_a^ck也都小于阿列夫一,而我们还有着对不可计算序数的拓展,也就是Фck,假如说有一个不可计算序数ω_1^ck,用Фck可以表示为Ф(1)^ck,ω_2^ck可以表示为Ф(2)^ck,ω_3^ck可以表示为Ф(3)^ck.....以此类推,运算规则都一样,而Ф(1)^ck、Ф(2)^ck、Ф(3)^ck.....用二元ck函数可以表示为Ф(0,1)^ck,Ф(0,2)^ck,Ф(0,3)^ck....以此类推,


    IP属地:山东来自Android客户端2楼2023-12-01 19:43
    回复
      阿列夫数
      从阿列夫数开始,我们就进入了无穷大的概念。
      通过不断地构造一个集合,或者说一个集合拥有无穷多个元素,比如{0,1,2……},那么它的势(即它元素的个数),就是阿列夫零,阿列夫零可以被理解为最小的无穷基数。
      既然有阿列夫零,那肯定还会有阿列夫一、阿列夫二……的确,阿列夫一就是大于阿列夫零的下一个最小的无穷基数,阿列夫二就是大于阿列夫一的下一个最小的无穷基数……以此类推。
      不断地向下迭代,阿列夫阿列夫阿列夫……一直到阿列夫但是已经到达了无穷大的概念,单纯的数学运算已经不能将这些无穷大增强了。
      就好像ω+1、ω+ω……这些运算是无法到达阿列夫一的。
      因为你会发现,即使在无穷大的基础上,增加它的序数,是无法使得它的基数变大的,这两个数都是同样的无穷大,它们的元素依然可以一一对应。
      所以,需要一些公理或者一些定理、假设来证明更大的阿列夫一。
      连续统假设则认为2的阿列夫零次方等于阿列夫一,因为2的阿列夫零次方是对阿列夫零取幂集,一个集合的幂集的势,一般都比这个集合本身的元素个数多(空集除外)。(正数、负数、有理数、分数、偶数、奇数等集合的势是阿列夫零,实数集的势是阿列夫一,因为实数集当中包含了无理数,无理数是有理数无法通过加减乘除一个不是无理数的数得到不动点。)


      IP属地:山东来自Android客户端3楼2023-12-01 19:43
      回复
        世界基数
        如果一个k满足Vκ是ZFC的一个模型,那么κ是一个世界基数。


        IP属地:山东来自Android客户端4楼2023-12-01 19:44
        回复
          不可达基数:
          这个基数不与自然数集等势,>N0,其序数为α,设定β是序数,称β∪{β}为β的后继.可以证明,β是序数,则β的后继也是序数,记为β+1.而序数α,不可以找到序数β,使α为β的后继,即不存在∃β(α=β+1)。
          不可达基数是强弱不可达基数的统称。
          如果κ是不可数的、正则的极限基数,则称κ是弱不可达基数;如果κ是不可数的、正则的强极限基数,则称κ是强不可达基数。
          这两类大基数合称不可达基数,
          不可达基数也可称不可到达基数,大基数是集合论用语,而不可达基数就是大基数领域中最小的大基数,不可达基数也可以理解为是特殊的阿列夫不动点,不可达基数也是正则性基数,假设有一个n是不可数的且正则的极限基数,则称是弱不可达基数,如果是不可数的且正则的强极限基数,则称n是强不可达基数,在GCH,连续统假设之下,每个弱不达基数也是强不可达基数,每个强不可达基数也都是弱不可达基数。
          之所以用“不可达”称呼这类大基数,是因为不能用通常的集合论运算来“到达”它们,不可达基数拥有正则性,而不光是不可达基数,前面的很多基数有具有正则性质,就比如说阿列夫零,阿列夫零的势与所有自然数集合的势对等,而阿列夫零是不可以通过有限基数相加、相乘、乘方……等等到达的,而像阿列夫阿列夫零、阿列夫阿列夫阿列夫零……等等基数也具有正则性质,而怎么证明正则性质呢?
          若n是强不可达基数,又集合X的基数|X|<κ,则幂集P(X)的基数也小于κ,又若|S|<κ,且对每个X∈S,|X|<κ,则|∪S|<κ,这就是说,由小于n的基数,无论进行何种运算,总达不到n,取幂集也无法到达n。
          强不可达基数是一种正则基数,简称不可达基数,既是正则的又是强极限的无穷基数,即如果正则基数κ满足k>n,且对任何λ<k有2<k,κ就是一个强不可达基数。
          在ZFC系统中不能证明不可达基数的存在性,称这种基数为不可达的原因是它不可能从比它小的基数出发,不能使用通常的集合论运算得到,正如它的名称一样,“不可达”,但不可达基数也只是大基数领域的“守门人”,在后面的各种大基数中,不可达基数可以说是相当的渺小。


          IP属地:山东来自Android客户端5楼2023-12-01 19:44
          回复
            马洛基数:
            又称马赫罗基数,对于所有K,正则基数 β 的初始段(即 β 以下的所有基数)中都包含一个K基数。
            这里的K在这个基数以上所有的正则无限基数的并集中,删去所有小于K的基数后,剩余的基数集合是一个K的闭集。
            也就是一个马洛基数κ之下的不可达基数组成驻集,小于κ的所有正则基数集合是κ的驻子集,则κ为马洛基数,说明白点就是任意不可达基数k,其他不可达基数在这个k前面形成无界闭集取驻集族为{a {0,1} 都存在一个κ个元素的子集使f在这个集上的值相同。
            也是,最小不可达基数κ,需要满足cfκ=κ,a<κ→2^a<κ的基数,一个2-不可达基数κ是第κ个不可达基数,一个超不可达基数就是κ-不可达基数,每一个马洛基数κ之下的不可达基数组成驻集,小于κ的所有正则基数集合是κ的驻子集,则κ为马洛基数,说明白点就是任意不可达基数k,其他不可达基数在这个k前面形成无界闭集,则此k为马洛基数,第马洛基数个不可达基数一定是马洛基数。
            然后是2-马洛基数,下面的马洛基数形成驻集,超马洛基数,κ是κ-马洛基数。


            IP属地:山东来自Android客户端6楼2023-12-01 19:44
            回复
              不可数基数(比不可达基数小)
              不可数基数是一种无穷基数。不可数集的基数统称为不可数基数。一个无穷集合,如果不与自然数集等势,它就具有不可数基数。例如实数集R的基数、R的幂集P(R)的基数都是不可数基数。不可数基数有无穷多个等级。


              IP属地:山东来自Android客户端7楼2023-12-01 19:44
              回复
                不可描述基数
                基数K称为∏n不可描述基数如果对于每个∏m命题(φ,并且设置A⊆∨κ与(Vκ+n,∈,A)╞φ存在一个α<κ与(V α+n,∈,A ∩Vα)╞φ。这里看一下具有m-1个量词交替的公式,最外层的量词是通用的。∏n不可描述基数以类似的方式定义。这个想法是,即使具有额外的一元谓词符号(对于A)的优势,也无法通过具有m-1次量词交替的n+1 阶逻辑的任何公式将κ与较小的基数区分开来(从下面看)。
                这意味着它很大,因为这意味着必须有许多具有相似属性的较小基数。如果基数κ是∏nm,则称它是完全不可描述的——对于所有正整数m和n都难以描述。
                也是,这里不可描述基数是指一类大基数,指用∏nm或者是∑nm公式的概念和模型论工具所定义的基数,若对任何仅含一个二阶自由变元X的∏nm公式或∑nm公式Φ(X),当有α层结构〈Vα,∈↾Vα,R〉满足Φ(R)时,即〈Vα,∈↾Vα,R〉⊨Φ(R)成立时,存在β<α,使β层子结构也满足Φ(R),即〈Vβ,∈↾Vβ,R∩Vβ〉⊨Φ(R∩Vβ),则称基数α为∏mn或∑mn不可描述基数,注意到反射原理是指全域中的任何一阶公式可以用某一层Vβ中的相对化公式来代替,此处的不可描述性,就是指,在α层结构中真的公式,必可在α之前的某β层中为真,公式加以适当的限制,这种不可描述基数必然是很大的一类大基数,κ是强不可达基数,当且仅当κ是∏10不可描述基数,又当且仅当κ是∑11不可描述基数,κ是弱紧基数,当且仅当κ是∏11不可描述基数,若κ是可测基数,则κ是∏21不可描述基数。


                IP属地:山东来自Android客户端8楼2023-12-01 19:47
                回复
                  可迭代基数
                  将基数κ定义为可迭代的,前提是κ的每个子集都包含在弱κ-模型M中,其中在κ上存在一个M-超滤器,允许通过任意长度的超幂进行有根据的迭代。
                  Gitman给出了一个更好的概念,其中一个基数κ被定义为α-iterable 如果仅需要长度为α的超幂迭代才能有充分根据


                  IP属地:山东来自Android客户端9楼2023-12-01 19:48
                  回复
                    拉姆齐基数
                    让[ κ ]<ω表示κ的所有有限子集的集合。如果 对于每个函数, 基数 κ称为 Ramsey
                    f : [ κ ]<ω→{0,1}
                    存在基数为κ的集合A对于f是齐次的。也就是说,对于每个n,函数f在A的基数n的子集上是常数。如果A可以被选为κ的固定子集,则基数κ被称为不可言说的Ramsey。如果对于每个函数, 基数κ实际上被称为Ramsey
                    f : [ κ ]<ω→{0,1}
                    存在C,它是κ的一个闭无界子集,因此对于C中具有不可数共尾性的每个λ,都存在一个与 f 齐次的入的无界子集;稍微弱一点的是lamost Ramsey的概念,其中对于每个λ<κ,需要有序类型λ的f的同质集。
                    将基数κ定义为可迭代的,前提是κ的每个子集都包含在弱κ-模型M中,其中在κ上存在一个M-超滤器,允许通过任意长度的超幂进行有根据的迭代。
                    Gitman给出了一个更好的概念,其中一个基数κ被定义为α-iterable 如果仅需要长度为α的超幂迭代才能有充分根据。
                    也就是,拉姆齐基数定理确立了ω具有 R基数推广到不可数情况的特定性质,令让[ κ ] <ω表示κ的所有有限子集的集合,一个不可数的基数 κ 称为 R 如果,对于每个函数f : [ κ ] <ω → {0, 1},有一个基数κ的集合A对于f是齐次的,也就是说,对于每个n,函数f在来自A的基数n的子集上是常数,如果A可以选择为 κ 的平稳子集,则基数κ被称为不可称的R,如果对于每个函数, 基数κ实际上称为Rf : [ κ ] <ω → {0, 1},有C是κ的一个封闭且无界的子集,因此对于 C 中的每个λ具有不可数的共尾性,有一个λ的无界子集对于f是同质的;稍微弱一点的是几乎 R的概念,其中对于每个λ < κ , f的齐次集都需要阶类型λ,这些 R基数中的任何一个的存在都足以证明0 #的存在,或者实际上每个秩小于κ的集合都有一个尖,每个可测基数都是R大基数,每个 R大基数都是R大基数,介于 R和可测性之间的强度中间属性是κ上存在κ完全正态非主理想 I使得对于每个A ∉ I和对于每个函数,f : [ κ ] <ω → {0, 1},有一个集合B ⊂ A不在I中,对于f是齐次的,R基数的存在意味着0 #的存在,这反过来又意味着Kurt的可构公理的错误。


                    IP属地:山东来自Android客户端10楼2023-12-01 19:48
                    回复
                      强拉姆齐基数:
                      一个为κ的强拉姆齐基数,而且仅当对于每一个A⊆κ位于一个存在κ上的弱自可的κ-模型M,κ-模型M可数完备,〈M,U〉满足κ-完备,它必然是正确的,因为M在长度小于κ的序列下是封闭的。
                      强拉姆齐基数的力迫相关性质与之前的拉姆齐基数相同,强拉姆齐基数的一致性强于拉姆齐基数。


                      IP属地:山东来自Android客户端11楼2023-12-01 19:48
                      回复
                        弱紧致基数(位于马洛基数后)
                        k是弱紧致基数是指不可数且满足k → (k )。
                        所谓k是弱紧致基数,是指在不可数且Lκ,κ-句的集合中至多只使用了k个非逻辑符号的情况下,如果k-能够满足则能够满足。(弱紧致性)记载了两个弱紧致基数的定义。
                        前者是组合论的性质,后者是模型理论的性质。
                        首先需要确认这个定义是相同值,还是真的定义了相同的基数,但是以后再进行,这个弱紧致基数具有什么性质,是组合论和模型理论这两个理论。
                        也是大基数的一种,特殊的强不可达基数,一个基数κ被称为弱紧的,如果κ是强不可达的并且满足树性质或划分性质,从定义可见,弱紧性弱于可测性但强于不可达性,弱紧致基数是大基数理论中的一个核心概念,若语言Lκκ中任何只用到≤κ个非逻辑符号的语句集A有模型,当且仅当A的每个基数κ的子语句集有模型,则称基数κω是弱紧基数,弱紧基数是由匈牙学者爱尔特希和波兰学者塔尔斯基于1961年开始进行研究的,弱紧基数的等价性质很多,例如以无穷组合论中的一些性质来刻画,对于κω,κ是弱紧基数与以下各条等价:
                        1.κ具有分划性κ→(κ)22。
                        2.对任何基数γκ及nω,κ具有分划性质κ→(κ)nγ。
                        3.κ是强不可达基数且有数性质,κ是弱紧基数还与下列这些性质等价。
                        4.κ是超滤性质。
                        5.κ有弱超滤性质且κ是强不可达基数。
                        6.κ有Vκ可扩张性质。
                        7.κ有序性质。
                        8.κ是π11不可描述基数。
                        汉弗(Hanf,W.P.)于1964年与库仑(Kunen,K.)于1977年的工作结合起来,得到如下结论:
                        弱紧致基数κ是强马赫罗基数,并且κ以下的强马赫罗基数的集合是κ的驻子集.通常的一阶逻辑语言是Lωω,其紧致性定理是:
                        Lωω的任一语句集A有模型,当且仅当A的每个有穷子集有模型,亦即,语言Lωω是(ω,ω)紧的,上述弱紧基数的定义与此略有不同,如果完全依照ω的这一紧致性而加以推广,则可定义另一种弱紧基数,人们称之为弱紧2基数,基数κω称为弱紧2基数,是指语言Lκκ是(κ,κ)紧的,即对于Lκκ的任何基数≤κ的语句集A,A有模型,当且仅当A的每个基数κ的子语句集有模型,若将先前定义的弱紧基数称为弱紧1基数,则可以证明:
                        κ是弱紧1基数,当且仅当κ是弱紧2基数,且是强不可达基数,在广义连续统假设之下,弱紧1与弱紧2基数是相同的,弱紧2基数必为弱马赫罗基数


                        IP属地:山东来自Android客户端12楼2023-12-01 19:48
                        回复
                          可测基数(在拉姆齐基数后)
                          为了定义这个概念,人们在基数κ上或更一般地在任何集合上引入了一个二值度量。对于基数κ,它可以描述为将其所有子集细分为大集和小集,使得κ本身很大,∅并且所有单例{ α },α ∈ κ很小,小集的补集很大,并且反之亦然。小于的交集κ大集又大了。
                          事实证明,具有二值测度的不可数基数是无法从ZFC证明其存在的大基数。形式上,可测基数是不可数基数κ,使得在κ的幂集上存在κ加性、非平凡、0-1值测度。
                          (这里术语k-additive意味着,对于任何序列A α,α<λ的基数λ<κ,A α是成对相交的小于κ的序数集,A α的并集的度量等于个人A α的措施。)将满足集合a上的下一个的滤波器f称为超滤波器,对于所有的xa,X∈F或A X∈F ω上存在ω-完备非一元超滤波器,当k为不可数基数,k上存在K-完备非一元超滤波器时,k称为可数基数
                          定理( ZFC )
                          可测基数为不可达基数,可预测基数公理( Meas ) :“存在可预测基数.”可测基数与初等嵌入,当k是可测基数时,根据k上K-完备非一元超滤波器对v的超幂,构造了一类可拓m和一类函数j:V→M,并给出了 《φ(x1,...,xn):L∈-理论式》
                          ∀x1,...,xn∈V(φV(x1,...,xn)↔φM(j(x1),...,j(xn)))
                          对于所有α<K,j(α) =α且j(K ) > k 将j称为从v到m的初等嵌入,k是j的临界点
                          使用这个初等嵌入,可以显示出可预测基数k的很多性质在这种初等嵌入的存在下,k的可测性具有特征。
                          也是,可测基数是一个不可数的κ ,因此在κ的幂集上存在加性、非平凡、0-1值测度,而κ-additive意味着,对于任何序列Aα, α<λ 的基数λ<κ,Aα是<κ的序数的成对不相交集, Aα的并集的度量等于个体Aα的测量值。
                          κ是可测的意味着它是将宇宙V的非平凡基本嵌入到传递类M的临界,并使用了模型理论中的超强构造,由于V是一个适当的类别,因此需要解决一个在考虑超能力时通常不存在的技术问题,当且仅当 κ 是具有κ完全非主超滤器的不可数基数时, κ是可测量的基数,这也意味着超滤器中任何严格小于κ的集合的交集也在超滤器中。


                          IP属地:山东来自Android客户端13楼2023-12-01 19:48
                          回复
                            强可展开基数(位于不可描述基数后)
                            基数κ是λ不可展开的,当且仅当对于ZFC的基数κ的每个传递模型M负幂集使得κ在M中并且M包含其所有长度小于κ的序列,有非-将M的非平凡基本元素j嵌入到传递模型中,其中j的临界点为κ,且j (κ) ≥ λ,一个基数是可展开的当且仅当它对于所有的序数λ 都是 λ-不可折叠的,一个基数κ 是强 λ 不可折叠的当且仅当对于每个ZFC负幂集的基数 κ 的传递模型 M使得 κ 在M中并且M包含其所有长度小于 κ 的序列,存在一个非-将M的平凡基本嵌入j到传递模型“N”中,其中 j 的临界点为κ,j (κ) ≥ λ,并且 V(λ) 是N的子集,不失一般性,我们也可以要求N包含其所有长度为 λ 的序列,一个基数是强可展开的当且仅当它对于所有 λ 都是强 λ-不可展开的。


                            IP属地:山东来自Android客户端14楼2023-12-01 19:49
                            回复
                              强基数
                              如果λ是任何序数,κ是λ-strong意味着κ是基数并且存在从宇宙V到具有临界点κ和Vλ⊆M也就是说,M在初始段上与V一致。那么κ是强的意味着它对所有序数λ都是λ-强的。
                              巨大基数
                              V中存在一个初等嵌入j:V→M从V到一个具有临界点K的可传递内模型,那么这个它就是所谓的巨大基数,也就是j(K)M⊂M。
                              伍丁基数(在强基数后)
                              f:λ→λ存在一个基数κ<λ和{f(β)|β<κ}和基本嵌入j : V→M来自冯诺依曼宇宙V进入可传递的内部模型M和临界点κ和V_j(f)(κ)⊆M一个等效的定义是这样的:
                              λ是伍丁当且仅当λ对所有λ来说都是非常难以接近的
                              A⊆V_λ存在一个λ_A<λ这是<λ-A-strong的
                              超强基数
                              当且仅当存在基本嵌入 j :V→M从V到具有临界点κ和V_j(κ)⊆M
                              类似地,基数κ是n-超强当且仅当存在基本嵌入j : V→M从V到具有临界点κ和V_jn(κ)⊆M 。
                              Akihiro Kanamori已经表明,对于每个n>0,n+1-超强基数的一致性强度超过n-huge 基数的一致性强度。


                              IP属地:山东来自Android客户端15楼2023-12-01 19:49
                              回复